Test the convergence of $\displaystyle \sum_{n=0}^\infty \frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}}{\ln (k)}$.
I try to use ratio test but I am stuck in summing up the numerator part.
Can anyone help me?
Test the convergence of $\displaystyle \sum_{n=0}^\infty \frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}}{\ln (k)}$.
I try to use ratio test but I am stuck in summing up the numerator part.
Can anyone help me?
The first step in order to extablish if a series $\displaystyle \displaystyle \sum_{n=0}^{\infty} a_{n}$ converges or not is to verify the $\displaystyle \displaystyle \lim_{n \rightarrow \infty} a_{n}$. How can we say in this case?...
Kind regards
$\displaystyle \chi$ $\displaystyle \sigma$