This is a question from my calculus 3 class.

"Find an equation of the plane through the point (-1,4,2) that contains the line of intersection of the planes (4x - y + z - 2) = 0 and (2x + y - 2z - 3) = 0."

I'm having problems trying to figure this out. I get an answer but it's different than what the book says it is.

My work:

v1= <4,-1,1>

v2= <2,1,-2>

v1xv2=i+ 10j+ 6k

Point-normal form equation of plane:

(x+1) + 10(y-4) + 6(z-2) = 0

x + 1 + 10y - 40 + 6z - 12 = 0

x + 10y + 6z = 51 <---- my answer?

The book says the answer is 4x - 13y + 21z = -14, and more than likely it is correct and not me in this case.