Use known Maclaurin expansions to find the Maclaurin expansion, by adding, composing, differentiating, and so on.
1/((1-x)^3)
is the function I'm supposed to expand and I don't even know where to start. Thanks in advance!!!!
MacLaurin expansion is $\displaystyle f(0)+f'(0)x+\frac{f''(0)}{2!}x^{2}+\frac{f'''(0)x^ {3}}{3!}+.......+\frac{f^{n}(0)}{n!}x^{n}$
$\displaystyle f(x)=\frac{1}{(1-x)^{3}}$
$\displaystyle f'(x)=\frac{3}{(x-1)^{4}}$
$\displaystyle f''(x)=\frac{-12}{(x-1)^{5}}$
.
.
.
.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$\displaystyle f(0)=1$
$\displaystyle f'(0)x=3x$
$\displaystyle \frac{f''(0)}{2!}x^{2}=6x^{2}$
$\displaystyle \frac{f'''(0)}{3!}x^{3}=10x^{3}$
.
.
.
.
.
See the pattern.