Results 1 to 2 of 2

Math Help - Integrate this

  1. #1
    Newbie mathproblem's Avatar
    Joined
    Oct 2005
    Posts
    6

    Integrate this

    How would you integrate this [ 1 / (49*e^(-4x) + e^(4x)) ] im stuck.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    TD!
    TD! is offline
    Senior Member
    Joined
    Jan 2006
    From
    Brussels, Belgium
    Posts
    405
    Thanks
    3
    \int {\frac{1}{{49e^{ - 4x}  + e^{4x} }}dx}  = \int {\frac{{e^{4x} }}{{49 + e^{8x} }}dx}  = \frac{1}{{49}}\int {\frac{{e^{4x} }}{{1 + \frac{{e^{8x} }}{{49}}}}dx}

    \frac{1}{{49}}\int {\frac{{e^{4x} }}{{1 + \left( {\frac{{e^{4x} }}{7}} \right)^2 }}dx} \mathop  \to \limits_{dt = 4e^{4x} dx}^{t = e^{4x} } \frac{1}{{49}}\frac{1}{4}\int {\frac{1}{{1 + \left( {\frac{t}{7}} \right)^2 }}dt}

    \frac{7}{{4 \cdot 49}}\int {\frac{1}{{1 + \left( {\frac{t}{7}} \right)^2 }}d\left( {\frac{t}{7}} \right)}  = \frac{1}{{28}}\arctan \left( {\frac{t}{7}} \right) + c

    And finally, substituting back:

    \frac{1}{{28}}\arctan \left( {\frac{{e^{4x} }}{7}} \right) + c
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Integrate 3 e^x
    Posted in the Calculus Forum
    Replies: 4
    Last Post: June 9th 2010, 02:16 PM
  2. how to integrate this ??
    Posted in the Calculus Forum
    Replies: 8
    Last Post: August 9th 2009, 09:14 PM
  3. Integrate
    Posted in the Calculus Forum
    Replies: 7
    Last Post: April 28th 2009, 08:54 PM
  4. How to integrate x^x?
    Posted in the Calculus Forum
    Replies: 5
    Last Post: April 25th 2009, 08:51 PM
  5. Integrate
    Posted in the Calculus Forum
    Replies: 8
    Last Post: April 15th 2009, 04:50 PM

Search Tags


/mathhelpforum @mathhelpforum