If $\displaystyle A= \lim_{x \to \frac{\pi}{2}}\frac{1-sin^{\lambda+\mu}x}{\sqrt{(1-sin^\lambda x).(1-sin^\mu}x)}$

where $\displaystyle \lambda,\mu>0,$ Then find $\displaystyle A=$

Printable View

- Jan 14th 2011, 09:07 PMjacksLimit.
If $\displaystyle A= \lim_{x \to \frac{\pi}{2}}\frac{1-sin^{\lambda+\mu}x}{\sqrt{(1-sin^\lambda x).(1-sin^\mu}x)}$

where $\displaystyle \lambda,\mu>0,$ Then find $\displaystyle A=$ - Jan 14th 2011, 09:10 PMdwsmith
- Jan 14th 2011, 09:29 PMjacks
but Using L.Hospital this is very Complicated.....

- Jan 14th 2011, 09:31 PMdwsmith
The solution is $\displaystyle \displaystyle\frac{\lambda+\mu}{\sqrt{\lambda\mu}}$

The only way I see you bringing the lambda and mu down is by applying the rule. - Jan 14th 2011, 09:47 PMjacks
Thanks for answer...

now I am trying once again........