Results 1 to 7 of 7

Math Help - Integration ...

  1. #1
    Member
    Joined
    Apr 2009
    From
    Jerusalem - Israel
    Posts
    108

    Integration ...

    How can I show that:


    <br />
\displaystyle \int{\frac{dx}{\sqrt{4-x^2}}=\sin^{-1}(\frac {x}{2})<br />
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Mar 2010
    From
    Florida
    Posts
    3,093
    Thanks
    5
    Trig sub 1-cos^2 = sin^2 use this fact.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Master Of Puppets
    pickslides's Avatar
    Joined
    Sep 2008
    From
    Melbourne
    Posts
    5,236
    Thanks
    28
    By substitution make x = 2\sin \theta
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member
    Joined
    Apr 2009
    From
    Jerusalem - Israel
    Posts
    108
    Quote Originally Posted by pickslides View Post
    By substitution make x = 2\sin \theta
    \displaystyle x=2\sin \theta

    \displaystyle dx=2\cos\theta d\theta

    \displaystyle d\theta=\frac {dx}{2\cos \theta}

    \displaystyle d\theta=\frac {dx}{2\sqrt{1-\sin^2 \theta}}

    \displaystyle d\theta=\frac {dx}{2\sqrt{1-(\frac{x}{2})^2}}

    \displaystyle d\theta=\frac {dx}{\sqrt{4-x^2}}

    \displaystyle \theta=\int{\frac {dx}{\sqrt{4-x^2}}}=\sin^{-1}(\frac{x}{2})+C

    OK Thanks
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor
    Joined
    Dec 2009
    Posts
    3,120
    Thanks
    1
    You still haven't really "shown" it...

    Draw a right-angled triangle, perpendicular height x,

    hypotenuse 2 and base \sqrt{4-x^2}

    such that the angle \theta is opposite the side x.

    Then...

    \displaystyle\ Sin\theta=\frac{x}{2}\Rightarrow\frac{d}{dx}Sin\th  eta=\frac{d\theta}{dx}\;\frac{d}{d\theta}Sin\theta  =\frac{1}{2}


    \Rightarrow\ 2Cos\theta\;d\theta=dx

    Therefore

    \displaystyle\frac{1}{Cos\theta}=\frac{2}{\sqrt{4-x^2}}


    \displaystyle\int{\frac{dx}{\sqrt{4-x^2}}}=\frac{1}{2}\int{\frac{1}{Cos\theta}2Cos\the  ta}d\theta=\theta=Sin^{-1}\left[\frac{x}{2}\right]

    Follow Math Help Forum on Facebook and Google+

  6. #6
    Member
    Joined
    Apr 2009
    From
    Jerusalem - Israel
    Posts
    108
    Quote Originally Posted by Archie Meade View Post
    You still haven't really "shown" it...

    Draw a right-angled triangle, perpendicular height x,

    hypotenuse 2 and base \sqrt{4-x^2}

    such that the angle \theta is opposite the side x.

    Then...

    \displaystyle\ Sin\theta=\frac{x}{2}\Rightarrow\frac{d}{dx}Sin\th  eta=\frac{d\theta}{dx}\;\frac{d}{d\theta}Sin\theta  =\frac{1}{2}


    \Rightarrow\ 2Cos\theta\;d\theta=dx

    Therefore

    \displaystyle\frac{1}{Cos\theta}=\frac{2}{\sqrt{4-x^2}}


    \displaystyle\int{\frac{dx}{\sqrt{4-x^2}}}=\frac{1}{2}\int{\frac{1}{Cos\theta}2Cos\the  ta}d\theta=\theta=Sin^{-1}\left[\frac{x}{2}\right]
    x=2\sin \theta

    it is clear that:

    \sin \theta=\frac{x}{2}

    \theta=\sin^{-1}(\frac{x}{2})

    Archie Meade thank you for your help.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Member
    Joined
    Apr 2009
    From
    Jerusalem - Israel
    Posts
    108

    With explanation ....

    \displaystyle x=2\sin \theta

    \displaystyle dx=2\cos\theta d\theta

    \displaystyle d\theta=\frac {dx}{2\cos \theta}

    We know that:

    \displaystyle \sin^2 \theta +\cos^2 \theta =1

    \displaystyle \cos \theta =\sqrt {1-\sin^2 \theta }
    \displaystyle d\theta=\frac {dx}{2\sqrt{1-\sin^2 \theta}}


    \displaystyle x=2\sin \theta

    \displaystyle \sin \theta=\frac{x}{2}

    \displaystyle \sin^2 \theta=(\frac{x}{2})^2
    \displaystyle d\theta=\frac {dx}{2\sqrt{1-(\frac{x}{2})^2}}

    \displaystyle d\theta=\frac {dx}{\sqrt{4-x^2}}

    \displaystyle \theta=\int{\frac {dx}{\sqrt{4-x^2}}}


    \displaystyle x=2\sin \theta

    \displaystyle \sin \theta=\frac{x}{2}

    \displaystyle \theta =\sin^{-1}(\frac{x}{2})
    \displaystyle \theta=\int{\frac {dx}{\sqrt{4-x^2}}}=\sin^{-1}(\frac{x}{2})+C
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 3
    Last Post: November 3rd 2010, 12:54 AM
  2. Replies: 2
    Last Post: November 2nd 2010, 04:57 AM
  3. Replies: 8
    Last Post: September 2nd 2010, 12:27 PM
  4. Replies: 2
    Last Post: February 19th 2010, 10:55 AM
  5. Replies: 6
    Last Post: May 25th 2009, 06:58 AM

Search Tags


/mathhelpforum @mathhelpforum