Express the limit as a definite integral. [Hint: Consider f(x) = 4x^8.]
How would I start a problem like this?
If f(*) is Riemann-integrable in [a,b] , then...
$\displaystyle \displaystyle \int_{a}^{b} f(t)\ dt = \lim_{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f(a + i\ \frac{b-a}{n})$ (1)
Kind regards
$\displaystyle \chi$ $\displaystyle \sigma$