Results 1 to 5 of 5

Math Help - Integral by substitution

  1. #1
    Junior Member
    Joined
    Sep 2010
    Posts
    64

    Integral by substitution

    Hi, I have the following problem but I do not know what to do...what substitution should I choose? Thanks in advance!

    Using a substitution of the form y=a+b sinh(t), or otherwise, find polynomial p(y) such that \int \sqrt{10+y^2-2y} dy = +p(y) \sqrt{10+y^2-2y} + C.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Mar 2010
    Posts
    715
    Thanks
    2
    What does the plus that precedes p(y) indicate? If you want the integral:

    Write y^2-2y+10 = (y-1)^2+9 and let y+1 = 3\tan{t}.
    You will need to find the integral \sec^3{t}, for which you should see here.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Sep 2010
    Posts
    64

    Help, please...

    Hi,

    I am not sure...I guess it means that it is positive? It does not say anything else.

    I have done it but I have got the wrong result, I think.

    I got
    9/2 arsinh((y-1)/3)+(1/2)((y-1)/3) \sqrt{10+y^2+2y} + C

    I used a different substitution though, y=1+3 sinh(t), with dy=3 cosh(t) dt.

    A summary of my calculations is here:

    \int \sqrt{10+y^2-2y} dy = \int \sqrt{(y-1)^2+3^2} dy
    = \int \sqrt{(3 sinh(t))^2+3^2} 3 cosh(t) dt
    = 9 \int \sqrt{1+sinh^2(t)} cosh(t) dt = 9 \int cosh^2(t) dt
    = 9/2 \int (1 + cosh(2t)) dt = 9/2 (t + sinh(2t)/2) + C = 9/2 (t sinh(t) + cosh(t)) + C

    Substituting back to y:

    = 9/2 * arsinh((y-1)/3) + 1/2 * ((y-1)/3) \sqrt{10+y^2-2y} + C

    (using the fact that cosh(t) = \sqrt{1+sinh^2(t)} = \sqrt{10+y^2-2y}
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,553
    Thanks
    1424
    Quote Originally Posted by juanma101285 View Post
    Hi, I have the following problem but I do not know what to do...what substitution should I choose? Thanks in advance!

    Using a substitution of the form y=a+b sinh(t), or otherwise, find polynomial p(y) such that \int \sqrt{10+y^2-2y} dy = +p(y) \sqrt{10+y^2-2y} + C.
    \displaystyle \sqrt{y^2 - 2y + 10} = \sqrt{y^2 - 2y + (-1)^2 - (-1)^2 + 10}

    \displaystyle = \sqrt{(y-1)^2 + 9}.


    Now make the substitution \displaystyle y - 1 = 3\sinh{t} so that \displaystyle dy = 3\cosh{t}\,dt.


    Then your integral becomes

    \displaystyle \int{\sqrt{(y-1)^2 + 9}\,dy} = \int{\sqrt{(3\sinh{t})^2 + 9}\,3\cosh{t}\,dt}

    \displaystyle = \int{3\cosh{t}\sqrt{9\sinh^2{t} + 9}\,dt}

    \displaystyle = \int{3\cosh{t}\sqrt{9(\sinh^2{t} + 1)}\,dt}

    \displaystyle = \int{3\cosh{t}\sqrt{9\cosh^2{t}}\,dt}

    \displaystyle = \int{3\cosh{t}\cdot 3\cosh{t}\,dt}

    \displaystyle = \int{9\cosh^2{t}\,dt}

    \displaystyle = \int{9\left(\frac{1}{2}\cosh{2t} + \frac{1}{2}\right)\,dt}

    \displaystyle = \int{\frac{9}{2}\cosh{2t} + \frac{9}{2}\,dt}

    \displaystyle = \frac{9}{4}\sinh{2t} + \frac{9}{2}t + C

    \displaystyle = \frac{9}{2}\sinh{t}\cosh{t} + \frac{9}{2}t + C

    \displaystyle = \frac{9}{2}\sinh{t}\sqrt{1 + \sinh^2{t}} + \frac{9}{2}t + C

    \displaystyle = \frac{9}{2}\left(\frac{y-1}{3}\right)\sqrt{1 + \left(\frac{y-1}{3}\right)^2} + \frac{9}{2}\sinh^{-1}\left(\frac{y-1}{3}\right) + C

    \displaystyle = \frac{3(y-1)}{2}\frac{\sqrt{y^2 - 2y + 10}}{\sqrt{9}} + \frac{9}{2}\sinh^{-1}\left(\frac{y-1}{3}\right) + C

    \displaystyle = \frac{y-1}{2}\sqrt{y^2 - 2y + 10} + \frac{9}{2}\sinh^{-1}\left(\frac{y-1}{3}\right) + C.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member
    Joined
    Sep 2010
    Posts
    64
    Thanks!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. [SOLVED] U substitution with integral
    Posted in the Calculus Forum
    Replies: 3
    Last Post: December 14th 2011, 03:20 PM
  2. Integral by substitution
    Posted in the Calculus Forum
    Replies: 4
    Last Post: August 26th 2009, 12:22 PM
  3. def integral with substitution
    Posted in the Calculus Forum
    Replies: 1
    Last Post: January 24th 2009, 06:39 PM
  4. Integral Substitution
    Posted in the Calculus Forum
    Replies: 9
    Last Post: October 19th 2008, 07:15 PM
  5. integral by substitution
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 22nd 2008, 11:46 AM

Search Tags


/mathhelpforum @mathhelpforum