$\displaystyle x\frac{dy}{dx}+y=\sin(x)$, $\displaystyle x>0$, initial condition: $\displaystyle y(\frac{\pi}{2})=1$

What I have so far...

$\displaystyle \frac{dy}{dx}+\frac{1}{x}y=\frac{\sin(x)}{x}

\Rightarrow \int \frac{1}{x}dx=\ln|x| \Rightarrow e^{\ln|x|}=x

$

I'm not sure if I did the previous part right. And after that I'm unsure how to proceed.