This technique requires an understanding and recognition of complex numbers.
Specifically Euler's formula:
[LaTeX ERROR:
Convert failed]
Recognize, for example, that the real portion:
[LaTeX ERROR:
Convert failed]
Given an integral of the general form:
[LaTeX ERROR:
Convert failed]
We can complexify it:
[LaTeX ERROR:
Convert failed]
[LaTeX ERROR:
Convert failed]
With basic rules of exponents:
[LaTeX ERROR:
Convert failed]
It can be proven that the "real portion" operator can be moved outside the integral:
[LaTeX ERROR:
Convert failed]
The integral easily evaluates:
[LaTeX ERROR:
Convert failed]
Multiplying and dividing by (1-2i):
[LaTeX ERROR:
Convert failed]
Which can be rewritten as:
[LaTeX ERROR:
Convert failed]
Applying Euler's forumula:
[LaTeX ERROR:
Convert failed]
Expanding:
[LaTeX ERROR:
Convert failed]
Taking the Real part of this expression:
[LaTeX ERROR:
Convert failed]
So:
[LaTeX ERROR:
Convert failed]