Results 1 to 3 of 3

Math Help - Indefinite integral

  1. #1
    Junior Member
    Joined
    Sep 2010
    Posts
    33

    Indefinite integral

    The integral I am trying to solve is:

    \int\frac{x}{\sqrt{x^2 + x +1}} dx


    What should I start by doing?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Mar 2010
    Posts
    715
    Thanks
    2
    Start by rewriting the integral as:

     \displaystyle I = \int\frac{x}{\sqrt{x^2+x+1}}\;{dx} = \int\frac{\frac{1}{2}(2x+1)+x-\frac{1}{2}(2x+1)}{\sqrt{x^2+x+1}}\;{dx}

    \displaystyle \Rightarrow I = \int\frac{\frac{1}{2}(2x+1)}{\sqrt{x^2+x+1}}\;{dx}  +\frac{1}{2}\int\frac{2x-(2x+1)}{\sqrt{x^2+x+1}}\;{dx}

    \displaystyle \Rightarrow I = \underbrace{\int\frac{\frac{1}{2}(2x+1)}{\sqrt{x^2  +x+1}}\;{dx}}_{I_{1}}-\underbrace{\frac{1}{2}\int\frac{1}{\sqrt{x^2+x+1}  }\;{dx}}_{I_{2}}

    We can see that I_{1} is of the form \int\frac{\frac{1}{2}f'(x)}{\sqrt{f(x)}}\;{dx} = \sqrt{f(x)}+C
    (or we can just let u = \sqrt{x^2+x+1}). Thus I_{1} = \sqrt{x^2+x+1}+k_{1}

    For I_{2} complete the square x^2+x+1 = \left(x+\frac{1}{2}\right)^2+\frac{3}{4}.
    Then let x+\frac{1}{2} = \frac{\sqrt{3}}{2}\sinh{\varphi}, then dx = \frac{\sqrt{3}}{2}\cosh{\varphi} \;{d\varphi}.

    \displaystyle \therefore ~   I_{2} = \frac{1}{2}\int\frac{1}{\sqrt{x^2+x+1}}\;{dx} = \frac{1}{2}\int\frac{1}{\sqrt{\left(x+\frac{1}{2}\  right)^2+\frac{3}{4}}}\;{dx}

     \displaystyle \Rightarrow ~ I_{2} = \frac{1}{2}\int\frac{\frac{\sqrt{3}}{2}\cosh{\varp  hi}}{\sqrt{\left(\frac{\sqrt{3}}{2}\sinh{\varphi}\  right)^2+\frac{3}{4}}}\;{d\varphi} = \frac{1}{2}\int\frac{\frac{\sqrt{3}}{2}\cosh{\varp  hi}}{\sqrt{\frac{3}{4}\sinh^2{\varphi}+\frac{3}{4}  }}\;{d\varphi}

     \displaystyle\Rightarrow ~ I_{2} = \frac{1}{2}\int\frac{\frac{\sqrt{3}}{2}\cosh{\varp  hi}}{\sqrt{\frac{3}{4}\cosh^2{\varphi}}}\;{d\varph  i} = \frac{1}{2}\int\frac{\frac{\sqrt{3}}{2}\cosh{\varp  hi}}{\frac{\sqrt{3}}{2}\cosh{\varphi}}\;{d\varphi}

     \displaystyle \Rightarrow ~ I_{2} = \frac{1}{2}\int\;{d\varphi} = \frac{1}{2}\varphi+k_{2} =  \frac{1}{2}\sinh^{-1}\left(\frac{2x+1}{\sqrt{3}}\right)+k_{2}

    Therefore  \displaystyle I = I_{1}-I_{2} = \sqrt{x^2+x+1}-\frac{1}{2}\sinh^{-1}\left(\frac{2x+1}{\sqrt{3}}\right)+k.
    Last edited by TheCoffeeMachine; November 2nd 2010 at 12:57 PM.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Sep 2010
    Posts
    33
    You solved the entire integral! Thanks!!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Indefinite integral
    Posted in the Calculus Forum
    Replies: 6
    Last Post: July 28th 2010, 10:30 AM
  2. indefinite integral
    Posted in the Calculus Forum
    Replies: 3
    Last Post: March 1st 2010, 11:16 AM
  3. Indefinite Integral
    Posted in the Calculus Forum
    Replies: 6
    Last Post: February 22nd 2010, 07:44 PM
  4. Indefinite Integral
    Posted in the Calculus Forum
    Replies: 3
    Last Post: November 19th 2007, 11:56 AM
  5. indefinite integral
    Posted in the Calculus Forum
    Replies: 3
    Last Post: November 9th 2007, 03:23 PM

Search Tags


/mathhelpforum @mathhelpforum