The problem is the summation of (n/(n+1)!) from n=1 to infinity.
any help that can be given is greatly appreciated!
Is...
$\displaystyle \displaystyle \frac{n}{(n+1)!}= \frac{n+1}{(n+1)!} - \frac{1}{(n+1)!}= \frac{1}{n!} - \frac{1}{(n+1)!}$ (1)
... so that...
$\displaystyle \displaystyle \sum_{n=1}^{\infty} \frac{n}{(n+1)!} = \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=1}^{\infty} \frac{1}{(n+1)!} = \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=2}^{\infty} \frac{1}{n!} = 1$ (2)
Kind regards
$\displaystyle \chi$ $\displaystyle \sigma$