Results 1 to 6 of 6

Math Help - Integrate [x^3/sqrt(1-x^2/k^2)]dx

  1. #1
    Newbie
    Joined
    Aug 2010
    Posts
    6

    Integrate [x^3/sqrt(1-x^2/k^2)]dx

    Can someone please check my process, also please can you advise on an easier way to write mathematical notation on this forum?

    Integrate ( x^3/(1-x^2/k^2))dx
    where k is a constant.
    Let u = x^2, dv = x/sqrt(1-x^2/k^2)

    Integration by parts.

    Integral fx = uv - integral vdu
    v = -k^2*sqrt(1-x^2/k^2)
    du = 2xdx


    susbstituting for u,v,du

    Integral fx = -k^2 *x^2*sqrt(1-x^2/k^2)+ integral [2xk^2*sqrt(1-x^2/k^2)dx]
    Integral fx = -k^2 *x^2*sqrt(1-x^2/k^2) - 2/3*k^4*((1-x^2/k^2)^3/2)
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    skeeter's Avatar
    Joined
    Jun 2008
    From
    North Texas
    Posts
    12,109
    Thanks
    976
    cleared the fraction in the radical to make life easier ...

    \displaystyle \frac{k}{k} \cdot \frac{x^3}{\sqrt{1 - \frac{x^2}{k^2}}}

    \displaystyle \frac{kx^3}{\sqrt{k^2\left(1 - \frac{x^2}{k^2}\right)}}<br />



    \displaystyle -k \int x^2 \cdot \frac{-x}{\sqrt{k^2-x^2}} \, dx

    u = x^2

    du = 2x \, dx

    dv = \frac{-x}{\sqrt{k^2-x^2}} \, dx

    v = \sqrt{k^2-x^2}


    \displaystyle -k \int x^2 \cdot \frac{-x}{\sqrt{k^2-x^2}} \, dx = -k\left[x^2\sqrt{k^2-x^2} - \int 2x\sqrt{k^2-x^2} \, dx\right]

    \displaystyle -k \int x^2 \cdot \frac{-x}{\sqrt{k^2-x^2}} \, dx = -k\left[x^2\sqrt{k^2-x^2} + \int -2x\sqrt{k^2-x^2} \, dx\right]

    \displaystyle -k \int x^2 \cdot \frac{-x}{\sqrt{k^2-x^2}} \, dx = -k\left[x^2\sqrt{k^2-x^2} + \frac{2}{3}(k^2-x^2)^{\frac{3}{2}} + C\right]
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Aug 2010
    Posts
    6

    thanks

    Quote Originally Posted by skeeter View Post
    cleared the fraction in the radical to make life easier ...

    \displaystyle \frac{k}{k} \cdot \frac{x^3}{\sqrt{1 - \frac{x^2}{k^2}}}

    \displaystyle \frac{kx^3}{\sqrt{k^2\left(1 - \frac{x^2}{k^2}\right)}}<br />



    \displaystyle -k \int x^2 \cdot \frac{-x}{\sqrt{k^2-x^2}} \, dx

    u = x^2

    du = 2x \, dx

    dv = \frac{-x}{\sqrt{k^2-x^2}} \, dx

    v = \sqrt{k^2-x^2}


    \displaystyle -k \int x^2 \cdot \frac{-x}{\sqrt{k^2-x^2}} \, dx = -k\left[x^2\sqrt{k^2-x^2} - \int 2x\sqrt{k^2-x^2} \, dx\right]

    \displaystyle -k \int x^2 \cdot \frac{-x}{\sqrt{k^2-x^2}} \, dx = -k\left[x^2\sqrt{k^2-x^2} + \int -2x\sqrt{k^2-x^2} \, dx\right]

    \displaystyle -k \int x^2 \cdot \frac{-x}{\sqrt{k^2-x^2}} \, dx = -k\left[x^2\sqrt{k^2-x^2} + \frac{2}{3}(k^2-x^2)^{\frac{3}{2}} + C\right]
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    Joined
    Mar 2010
    Posts
    715
    Thanks
    2

    Without 'by-parts'

    Rewrite the integral as following:

    \displaystyle \int\frac{x^3}{\sqrt{1-\frac{x}{k^2}}}\;{dx} \displaystyle = \int\frac{x^3}{\sqrt{\frac{1}{k^2}(k^2-x^2)}}}\;{dx} = \displaystyle = \int\frac{x^3}{\frac{1}{k}\sqrt{k^2-x^2}}}\;{dx} = \displaystyle = \int\frac{kx^3}{\sqrt{k^2-x^2}}}\;{dx}

    Let  t = \sqrt{k^2-x^2} and (using the chain rule) differentiate this with respect to x:

    \displaystyle \frac{dt}{dx} = \left(\sqrt{k^2-x^2\right)'  \displaystyle= \frac{\left(k^2-x^2\right)'}{2\sqrt{k^2-x^2}}   \displaystyle= \frac{-2x}{2\sqrt{k^2-x^2}}   \displaystyle= \frac{-x}{\sqrt{k^2-x^2}}

    Solving this for dx, as our purpose was, we have:

    \displaystyle dx = -\left(\frac{\sqrt{k^2-x^2}}{x}\right){dt}

    Going back to our original integral and putting that in for dx we get:

    \displaystyle \int\frac{kx^3}{\sqrt{k^2-x^2}}}\;{dx}  \displaystyle = -\int\left(\frac{kx^3}{\sqrt{k^2-x^2}}}\right)\;\left(\frac{\sqrt{k^2-x^2}}{x}\right){dt}}  \displaystyle = -\int kx^2 \;{dt}

    Finding x^2 in terms of t from the relation of our substitution gives us:

    t = \sqrt{k^2-x^2} \Rightarrow t^2 = k^2-x^2 \Rightarrow t^2-k^2 = -x^2 \Rightarrow k^2-t^2 = x^2.

    Putting that in for x^2, we get a simple function in the integrand that is easy to integrate:

    \displaystyle -\int kx^2 \;{dt} \displaystyle = -\int k(k^2-t^2) \;{dt} \displaystyle = -k\left(k^2t-\frac{t^3}{3}\right)+C = -\frac{k}{3}\left(3k^2t-t^3\right)+C

    Substituting back for what we have let t to be, we finally get:

    \displaystyle \int\frac{x^3}{\sqrt{1-\frac{x}{k^2}}}\;{dx} = -\frac{k}{3}\left[3k^2\sqrt{k^2-x^2}-(k^2-x^2)^{\frac{3}{2}}\right]+C.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Super Member
    Joined
    Jun 2009
    Posts
    806
    Thanks
    4
    By substitution method.

    Given integration can be written as

    \int{\frac{kx^3}{\sqrt{k^2 -x^2}}}\;{dx}

    Let x = ksinθ. dx = kcosθdθ. k^2 - x^2 = k^2cos^2θ. Substitute these values in the integration and simplify.

    .
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Newbie
    Joined
    Aug 2010
    Posts
    6

    thanks

    Quote Originally Posted by TheCoffeeMachine View Post
    Rewrite the integral as following:

    \displaystyle \int\frac{x^3}{\sqrt{1-\frac{x}{k^2}}}\;{dx} \displaystyle = \int\frac{x^3}{\sqrt{\frac{1}{k^2}(k^2-x^2)}}}\;{dx} = \displaystyle = \int\frac{x^3}{\frac{1}{k}\sqrt{k^2-x^2}}}\;{dx} = \displaystyle = \int\frac{kx^3}{\sqrt{k^2-x^2}}}\;{dx}

    Let  t = \sqrt{k^2-x^2} and (using the chain rule) differentiate this with respect to x:

    \displaystyle \frac{dt}{dx} = \left(\sqrt{k^2-x^2\right)'  \displaystyle= \frac{\left(k^2-x^2\right)'}{2\sqrt{k^2-x^2}}  \displaystyle= \frac{-2x}{2\sqrt{k^2-x^2}}  \displaystyle= \frac{-x}{\sqrt{k^2-x^2}}

    Solving this for dx, as our purpose was, we have:

    \displaystyle dx = -\left(\frac{\sqrt{k^2-x^2}}{x}\right){dt}

    Going back to our original integral and putting that in for dx we get:

    \displaystyle \int\frac{kx^3}{\sqrt{k^2-x^2}}}\;{dx}  \displaystyle = -\int\left(\frac{kx^3}{\sqrt{k^2-x^2}}}\right)\;\left(\frac{\sqrt{k^2-x^2}}{x}\right){dt}}  \displaystyle = -\int kx^2 \;{dt}

    Finding x^2 in terms of t from the relation of our substitution gives us:

    t = \sqrt{k^2-x^2} \Rightarrow t^2 = k^2-x^2 \Rightarrow t^2-k^2 = -x^2 \Rightarrow k^2-t^2 = x^2.

    Putting that in for x^2, we get a simple function in the integrand that is easy to integrate:

    \displaystyle -\int kx^2 \;{dt} \displaystyle = -\int k(k^2-t^2) \;{dt} \displaystyle = -k\left(k^2t-\frac{t^3}{3}\right)+C = -\frac{k}{3}\left(3k^2t-t^3\right)+C

    Substituting back for what we have let t to be, we finally get:

    \displaystyle \int\frac{x^3}{\sqrt{1-\frac{x}{k^2}}}\;{dx} = -\frac{k}{3}\left[3k^2\sqrt{k^2-x^2}-(k^2-x^2)^{\frac{3}{2}}\right]+C.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Integrate x^2/Sqrt[1- x^2]
    Posted in the Calculus Forum
    Replies: 2
    Last Post: March 14th 2011, 04:25 PM
  2. Integrate sqrt(1+(1\sqrt(x)))^2
    Posted in the Calculus Forum
    Replies: 9
    Last Post: July 15th 2010, 11:20 AM
  3. integrate 1/(sqrt(x^2-4))
    Posted in the Calculus Forum
    Replies: 1
    Last Post: June 30th 2010, 11:55 AM
  4. Integrate sqrt(1 +a^2*x^2)dx
    Posted in the Calculus Forum
    Replies: 8
    Last Post: December 19th 2007, 08:30 AM
  5. Integrate sqrt ( 4 -x^2)dx
    Posted in the Calculus Forum
    Replies: 14
    Last Post: April 28th 2005, 07:35 AM

Search Tags


/mathhelpforum @mathhelpforum