I need help $\displaystyle \begin{array}{l} without\;L'hopital's\;rule\;compute \\ \\ \lim _{x \to 0} \frac{{x(1 - \cos x)}}{{x - \sin x}} \\ \end{array} $
Follow Math Help Forum on Facebook and Google+
Is... $\displaystyle \displaystyle x\ (1-\cos x) = \frac{x^{3}}{2} - \frac{x^{5}}{24} + ...$ $\displaystyle \displaystyle x - \sin x = \frac{x^{3}}{6} - \frac{x^{5}}{120} + ... $ ... so that... Kind regards $\displaystyle \chi$ $\displaystyle \sigma$
deleted since it would still require l'Hospital.
Last edited by lvleph; Sep 4th 2010 at 02:56 PM.
View Tag Cloud