Results 1 to 3 of 3

Math Help - Integral

  1. #1
    Super Member
    Joined
    Mar 2010
    Posts
    715
    Thanks
    2

    Integral

    Find \displaystyle \int\frac{a(a^2-x^2)}{\sqrt{(a^2+ax+x^2)(a^2-ax+x^2)^3}}\;{dx} (where a is a constant, of course).
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Jan 2009
    Posts
    715
    Let me try


    Rewirte the integrand :

     = \frac{a(\frac{a^2}{x^2}-1)}{\sqrt{( \frac{a^2}{x} + a + x) ( \frac{a^2}{x} - a + x )^3 } }

    Then substitute  \frac{a^2}{x} + x = ay

     (\frac{a^2}{x^2} - 1 ) dx = -ady

    The integral becomes :


     - \int \frac{a^2 dy}{ \sqrt{ (ay+a)( ay-a)^3 } }

     = -\int \frac{dy}{\sqrt{(y+1)(y-1)^3 } }

    Sub.  y = \frac{t+1}{t-1}

     dy = -\frac{2dt}{(t-1)^2 }

    The integral

     =  \int \frac{1}{\sqrt{\frac{2t}{t-1}( \frac{2}{t-1} )^3} }~ \frac{2dt}{(t-1)^2 }

     = \frac{1}{2} \int \frac{dt}{\sqrt{t} }

     = \sqrt{t} + C

    But  t = \frac{y+1}{y-1} we have

     =  \sqrt{ \frac{y+1}{y-1} } + C

     =  \sqrt{ \frac{ a^2 + ax+ x^2 }{ a^2 - ax + x^2 }} + C
    Last edited by simplependulum; September 5th 2010 at 02:49 AM.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member
    Joined
    Mar 2010
    Posts
    715
    Thanks
    2
    You have totally annihilated it!

    Now that I've the answer, I see that it could have been done it in the following way:

    Rewrite the integrand:

    \displaystyle \frac{a(a^2-x^2)}{\sqrt{(a^2+ax+x^2)(a^2-ax+x^2)^3}}

    = \displaystyle \frac{a(a^2-x^2)}{\sqrt{(a^2+ax+x^2)}\sqrt{(a^2-ax+x^2)^3}}

    [Math] \displaystyle = \frac{a(a^2-x^2)}{\sqrt{(a^2+ax+x^2)}\sqrt{(a^2-ax+x^2)}(a^2-ax+x^2)} [/tex]

    \displaystyle = \frac{a(a^2-x^2)\sqrt{(a^2+ax+x^2)}}{(a^2+ax+x^2)((a^2-ax+x^2)\sqrt{(a^2-ax+x^2)}}

     \displaystyle = \frac{a(a^2-x^2)}{(a^2+ax+x^2)((a^2-ax+x^2)}\cdot \frac{\sqrt{(a^2+ax+x^2)}}{\sqrt{(a^2-ax+x^2)}}

    Let \displaystyle t = \frac{\sqrt{(a^2+ax+x^2)}}{\sqrt{(a^2-ax+x^2)}} (One would have to employ clairvoyance to spot that substitution without knowing the answer beforehand )

    Then \displaystyle \ln{t} =  \ln\left\{\frac{\sqrt{a^2+ax+x^2}}{\sqrt{a^2-ax+x^2}}\right\}

    \displaystyle = \ln\left(\sqrt{a^2+ax+x^2}\right)+\ln\left(\sqrt{a  ^2-ax+x^2}\right)

    \displaystyle= \frac{1}{2}\ln\left(a^2+ax+x^2\right)+\frac{1}{2}\  ln\left(a^2-ax+x^2\right)

    \displaystyle \Rightarrow \left(\frac{1}{t}\right)\frac{dt}{dx} = \frac{2x+a}{2(a^2+ax+x^2)}-\frac{2x-a}{2(a^2-ax+x^2)}

    \displaystyle \Rightarrow \left(\frac{1}{t}\right)\frac{dt}{dx} = \frac{(2x+a)(a^2-ax+x^2)-(2x-a)(a^2+ax+x^2)}{2(a^2+ax+x^2)(a^2-ax+x^2)}

    \displaystyle \Rightarrow \left(\frac{1}{t}\right)\frac{dt}{dx} = \frac{2 a^3-2ax^2}{2(a^2+ax+x^2)(a^2-ax+x^2)} = \frac{ a(a^2-x^2)}{(a^2+ax+x^2)(a^2-ax+x^2)}

    \displaystyle \Rightarrow \frac{dt}{dx} = \frac{ a(a^2-x^2)}{(a^2+ax+x^2)(a^2-ax+x^2)}\cdot \frac{\sqrt{(a^2+ax+x^2)}}{\sqrt{(a^2-ax+x^2)}}

    \displaystyle \Rightarrow {dx} = \frac{(a^2+ax+x^2)(a^2-ax+x^2)}{a(a^2-x^2)}\cdot \frac{\sqrt{(a^2-ax+x^2)}}{\sqrt{(a^2+ax+x^2)}}\;{dt}

    \displaystyle \therefore I = \int \frac{a(a^2-x^2)}{\sqrt{(a^2+ax+x^2)(a^2-ax+x^2)^3}}\;{dx}

    \displaystyle = \int \bigg\{\frac{a(a^2-x^2)}{(a^2+ax+x^2)((a^2-ax+x^2)}\cdot \frac{\sqrt{(a^2+ax+x^2)}}{\sqrt{(a^2-ax+x^2)}}\bigg\}\bigg\{\frac{(a^2+ax+x^2)(a^2-ax+x^2)}{a(a^2-x^2)}\cdot \frac{\sqrt{(a^2-ax+x^2)}}{\sqrt{(a^2+ax+x^2)}}\right\}\bigg\}\;{dt  }

    The integrand cancels to 1 (since the two products are inverse to each other), therefore I = t+k.

    Hence \displaystyle \int \frac{a(a^2-x^2)}{\sqrt{(a^2+ax+x^2)(a^2-ax+x^2)^3}}\;{dx} = \frac{\sqrt{(a^2+ax+x^2)}}{\sqrt{(a^2-ax+x^2)}}+k.
    Last edited by TheCoffeeMachine; September 6th 2010 at 01:13 AM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: August 31st 2010, 08:38 AM
  2. Replies: 1
    Last Post: June 2nd 2010, 03:25 AM
  3. Replies: 0
    Last Post: May 9th 2010, 02:52 PM
  4. [SOLVED] Line integral, Cauchy's integral formula
    Posted in the Differential Geometry Forum
    Replies: 7
    Last Post: September 16th 2009, 12:50 PM
  5. Replies: 0
    Last Post: September 10th 2008, 08:53 PM

Search Tags


/mathhelpforum @mathhelpforum