Hi

I am having trouble with the following questions:

Solve the differential equations

1)$\displaystyle \frac{dy}{dx} = e^{x+y}$

$\displaystyle \frac{dy}{dx} = e^x * e^y$

$\displaystyle \frac{1}{e^y} * \frac{dy}{dx} = e^x $

not sure what i should do next

2) $\displaystyle \frac{dy}{dx} = 1+x-y-xy$

$\displaystyle y * \frac{dy}{dx}$

$\displaystyle y(1+x) * \frac{dy}{dx} = 1+x$

$\displaystyle y * \frac{dy}{dx} = \frac{1+x}{1+x}$

$\displaystyle y * \frac{dy}{dx} = 1$

$\displaystyle \frac{y^2}{2} = x+ C$

$\displaystyle y^2 = \frac{x+C}{2}$

P.S