.
Let so that and .
The integral becomes:
.
Hello, Punch!
Another method . . .
Integrate: .
We have: .
Let: .
Substitute: .
. . . . . . .
Back-substitute: .
. . . . . . . . . .
. . . . . . . . . .
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Some advice (welcome or not):
When given a linear expression under a radical,
. . let
Given: .an integral with
. . and the new integral will have no radicals (usually).