hello,

im stuck on an integration by parts problem:

$\displaystyle \int{s \times 2^s}$

here is what i have so far

$\displaystyle u = s$, $\displaystyle du = ds$

$\displaystyle dv = 2^{s}ds$, $\displaystyle v = \frac{2^{s+1}}{s+1}$

i know that

$\displaystyle \int{s \times 2^s} = uv - \int{vdu}$

$\displaystyle = s \times \frac{2^{s+1}}{s+1} - \int{\frac{2^{s+1}}{s+1}du}$

but im not sure how to continue...

could someone show me?