Find the derivative of
(1+x) ^ 1/x
can anyone help me
logarithmic differentiation ...
$\displaystyle y = (1+x)^{\frac{1}{x}}$
$\displaystyle \ln{y} = \frac{1}{x} \ln(1+x)$
$\displaystyle \frac{y'}{y} = \frac{1}{x} \cdot \frac{1}{1+x} - \ln(1+x) \cdot \frac{1}{x^2}$
$\displaystyle \frac{y'}{y} = \frac{1}{x}\left(\frac{1}{1+x} - \frac{\ln(1+x)}{x}\right)$
$\displaystyle y' = \frac{(1+x)^{\frac{1}{x}}}{x}\left(\frac{1}{1+x} - \frac{\ln(1+x)}{x}\right)$