Using the degree six Taylor polynomial approximate the value of f(1).
We know that e^x = n=0, infinite (x^n)/n!. Using this knowledge find the power series of the function f(x)=(e^x + e^-x)/2. Using the degree six Taylor polynomial approximate the value of f(1).
We know that e^x = n=0, infinite (x^n)/n!. Using this knowledge find the power series of the function f(x)=(e^x + e^-x)/2. Using the degree six Taylor polynomial approximate the value of f(1).
So where are you stuck?
Replace with and you have the Taylor series for .
Then substitute the two series into and simplify...