We know that e^x = n=0, infinite (x^n)/n!. Using this knowledge find the power series of the function f(x)=(e^x + e^-x)/2. Using the degree six Taylor polynomial approximate the value of f(1).

- Jun 2nd 2010, 01:09 AMewkimchiUsing the degree six Taylor polynomial approximate the value of f(1).
We know that e^x = n=0, infinite (x^n)/n!. Using this knowledge find the power series of the function f(x)=(e^x + e^-x)/2. Using the degree six Taylor polynomial approximate the value of f(1).

- Jun 2nd 2010, 01:32 AMProve It
- Jun 2nd 2010, 10:48 AMewkimchiDid I get it right?
After integration, I got x + (x^3)/6 + (x^5)/120 + (x^7)/5040

I plugged in 1 and got

5923/5040.

Is that right?