Lef $\displaystyle f'' > 0$ on $\displaystyle [a,b]$ with $\displaystyle f(a) < 0 = f(c) < f(b), \quad \int_a^b f(x)dx = 0$

Show that $\displaystyle c-a > b-a$

Printable View

- May 15th 2010, 11:37 AMelimzero position
Lef $\displaystyle f'' > 0$ on $\displaystyle [a,b]$ with $\displaystyle f(a) < 0 = f(c) < f(b), \quad \int_a^b f(x)dx = 0$

Show that $\displaystyle c-a > b-a$ - May 15th 2010, 02:14 PMHallsofIvy
misread the problem

- May 15th 2010, 08:49 PMautumn
- May 15th 2010, 10:42 PMelim