1. Calculus chain rule questions

Hi I have a few calculus questions, could you please explain how to get the final answer too, thanks.

Derivative of :

dy/dx here

dy/dx here

dy/dt here

2. Originally Posted by KK88
Hi I have a few calculus questions, could you please explain how to get the final answer too, thanks.

Derivative of :

Chain rule of the chain rule with a product rule

chain rule

dy/dx here
chain rule
dy/dx here
product rule with chain
dy/dt here
chain

You haven't attempted much so start by trying that.

3. Ok I figured out the middle three but I cannot quite get the first one and last one

4. $\displaystyle (cos\big(e^{x^2cos(x)}\big))^{\frac{1}{2}}$

$\displaystyle \frac{1}{2}(cos\big(e^{x^2cos(x)}\big))^{\frac{-1}{2}}(-sin\big(e^{x^2cos(x)}\big))(e^{x^2cos(x)}(2xcos(x)-x^2sin(x)))$

I am not going to simplify that.

5. $\displaystyle e^{2sin(8t)}$

$\displaystyle 8e^{2sin(8t)}2cos(8t)=16e^{2sin(8t)}cos(8t)$

6. Thanks for the responses.
The second one is correct however I still cant get the first one right, I input this:

7. The first one is correct too. Here is the maple output.

8. $\displaystyle \frac{1}{2}(cos\big(e^{x^2cos(x)}\big))^{\frac{-1}{2}}(-sin\big(e^{x^2cos(x)}\big))(e^{x^2cos(x)}(2xcos(x)-x^2sin(x)))$

You need to have this quantity in parenthesis.
(2xcos(x)-x^2sin(x))

9. Thanks that did it.