Results 1 to 5 of 5

Math Help - Fluid Force at an angle

  1. #1
    Junior Member Tclack's Avatar
    Joined
    Oct 2009
    From
    No permanant location.
    Posts
    57
    Thanks
    1

    Fluid Force at an angle

    I can do vertically submerged fluid force problems. One portion of my book says:
    If a flat surface is immersed so that it makes an angle of 0 \leq \theta \geq \frac{\pi}{2} with the vertical, then the fluid force on the surface is given by:
     F=\int^b_a \rho h(x)w(x)sec\theta dx

    Can someone explain exactly what the sec(theta) is giving me; how exactly this equation changing the original equation of a vertically submerged surface. I never took trig., so please dumb it down in that area



    *EDIT* If it helps, just made a diagram. Is this the correct angle in the equation?
    Attached Thumbnails Attached Thumbnails Fluid Force at an angle-fluid-press.jpg  
    Last edited by Tclack; April 25th 2010 at 05:26 PM. Reason: spelling
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Junior Member Tclack's Avatar
    Joined
    Oct 2009
    From
    No permanant location.
    Posts
    57
    Thanks
    1
    I found a suitable example problem. on page 490 of this book

    Calculus: Early Transcendentals - Google Books

    It seems a little clearer, now how does it change if we submerge the inclined figure further, such that the top no longer "kisses" the surface?

    It would seem to me that if the figure were submerged an additional 4 feet, and our height function, h(x) became y+4, the sec(@) or sin@, whatever we choose our reference to be, would skew that plus 4 height...
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor

    Joined
    Apr 2005
    Posts
    15,708
    Thanks
    1470
    If x is measured vertically, and y along the surface, then we have a right triangle with hypotenuse y and "near side" x: \frac{x}{y}= cos(\theta) so \frac{y}{x}= \frac{1}{cos(\theta)}= sec(\theta).

    y= x sec(\theta) so dy= sec(\theta)dx.

    The area of a small rectangle along the surface is w(x)dy= w(x)sec(\theta)dx.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Junior Member Tclack's Avatar
    Joined
    Oct 2009
    From
    No permanant location.
    Posts
    57
    Thanks
    1
    Now what if we sumberge the shape further under the fluid an additional height d?

    I've tried these:



     \int^b_a \rho w(x) h(x+d)sec\theta dx

    \rho V + \int^b_a \rho w(x)h(x+d)sec\theta dx (The V here being the volume of water above the submerged surface)

    \rho V + \int^b_a \rho w(x)h(x)sec\theta dx
    \rho V + \int^b_a \rho w(x)h(x+d)sec\theta dx

    But none of them seem to work.


    (P.S. Noseck, the ship's library was open, but thanks anyway :] )
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member Tclack's Avatar
    Joined
    Oct 2009
    From
    No permanant location.
    Posts
    57
    Thanks
    1
    Ok, i might as well come out with the problem. Please find my error:
    A pool is 10 ft wide and 16 ft long, One end has a depth of 4 feet, the other end has a depth of 8 ft (therefore, the bottom of the pool makes an inclined surface) Find the Total Fluid pressure on the pool's bottom.

    I can't make a picture right now, due to limitations of this computer (I'm on a Navy Ship, the computer doesn't have paint)

    so basically an inclined plane submerged 4 feet.

    For a visual, follow along with the last example of this:
    12.9 Force Exerted By A Fluid
    I'm following this example word for word and still missing something

    I'f I go down the shallow end a height h, and follow it over to the inclined surface I get a small dh that forms a rectangle with width dw

     cos\theta = \frac{dh}{dw}
     dw=\frac{dh}{cos\theta }
    by similar triangles,  cos\theta = \frac{4}{\sqrt{4^2+16^2}}
    cos \theta = \frac{1}{\sqrt{17}}
    Therefore dw= \sqrt{17} dh ------------------------(1)
    now the little rectangle has an area dA such that:
    dA=dw10 from (1):  dA=10\sqrt{17} dh

    Weight Densiy is \rho = 62.4 therefore,
    Since Pressure is weight density x Height, the Pressure on this rectangle at depth h+4 is \rho (h+4) = 62.4(h+4)

    Force=Pressure x Area The force dF on this rectangl is:
     dF=(62.4)(h+4)(dA)= 62.4 (h+4) 10 \sqrt{17}

    That was on ONE rectangle, to get the Total Force, take the integral
    \int^4_0 624\sqrt{17}(h+4) dh
    624\sqrt{17}(\frac{h^2}{2}+4h)\mid^4_0
    This gives me:61,747
    ACTUAL ANSWER: 63,648

    What went Wrong?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. fluid force
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: October 19th 2011, 02:04 PM
  2. Replies: 0
    Last Post: February 7th 2010, 10:34 AM
  3. Fluid Force
    Posted in the Calculus Forum
    Replies: 0
    Last Post: February 24th 2009, 02:05 PM
  4. Fluid Force
    Posted in the Calculus Forum
    Replies: 3
    Last Post: December 4th 2008, 06:54 AM
  5. Fluid Pressure Fluid Force
    Posted in the Calculus Forum
    Replies: 2
    Last Post: March 13th 2008, 12:25 PM

Search Tags


/mathhelpforum @mathhelpforum