I am stuck! I've worked and reworked the following integral and I'm off by a factor of 2 (or 1/2) and can't seem to figure out why. Here is my work:
$\displaystyle \int\theta\sin\theta\cos\theta d\theta = \frac{1}{2}\int(\theta)(2sin\theta\cos\theta) d\theta = \frac{1}{2}\int\theta\sin2\theta d\theta$ [Applying double-angle identity]
Integrating by parts: letting $\displaystyle u=\theta, du=d\theta, dv=sin2\theta d\theta, v=-\frac{1}{2}cos2\theta$ gives:
$\displaystyle -\frac{1}{2}\theta cos2\theta + \frac{1}{2}\int cos2\theta d\theta$
Integrating the right hand term:
$\displaystyle -\frac{1}{2}\theta cos2\theta + \frac{1}{4}sin2\theta + C = \frac{1}{4}(sin2\theta-2\theta cos2\theta) + C$
The text answer is $\displaystyle \frac{1}{8}(sin2\theta-2\theta cos2\theta) + C$
Where am I missing the other factor of (1/2)??