Originally Posted by

**Dinkydoe** I have to calculate some tripe integral $\displaystyle \int\int\int_G f(x,y,z)dV$

with $\displaystyle G= \left\{x^2+y^2+z^2 \leq R^2, x^2+y^2\leq z^2, z\geq 0\right\}$

with spherical coordinates. Thus we substitute:

$\displaystyle x= \rho\sin(\phi)\cos(\theta)$

$\displaystyle y=\rho\sin(\phi)\sin(\theta)$

$\displaystyle z=\rho\cos(\phi)$

and $\displaystyle dV = \rho^2\sin(\phi)d\rho d\phi d\theta$

How do I find the boundaries of integration for $\displaystyle \phi,\rho,\theta$ w.r.t G?