Evaluate
∞
∑ 1 / [n(n+1) $\displaystyle 5^n$]
n=1
(hint: start with a geometric series, then use term-by-term integration)
===================================
Attempt:
∞
∑ $\displaystyle x^n$ = 1/(1-x) for |x|<1
n=0
Take the indefinite integral of both sides...
∞
∑ $\displaystyle x^{n+1}$ /(n+1) + C= -ln(1-x)
n=0
Put x=0 => C=0
∞
∑ $\displaystyle x^{n+1}$ /(n+1) = -ln(1-x)
n=0
Divide both sides by x^2
∞
∑ $\displaystyle x^{n-1}$ /(n+1) = - ln(1-x) / $\displaystyle x^2$
n=0
∞
∑ $\displaystyle x^{n-1}$ /(n+1) = - [ln(1-x) / $\displaystyle x^2$] - 1/x
n=1
How to continue?
Thanks for helping!