Results 1 to 8 of 8

Math Help - [SOLVED] Find the interval of convergence of the series

  1. #1
    Member
    Joined
    Mar 2010
    Posts
    107

    [SOLVED] Find the interval of convergence of the series

    55.  \sum_{n=1}^{\infty} \frac{n^n(x+2)^n}{3^nn!}

    My Solution

     \lim_{n\rightarrow\infty} |\frac{a_{n+1}}{a_n} | = \frac{(n+1)^{n+1}(x+2)^{n+1}}{3^{n+1}(n+1)!} * \frac{3^nn!}{n^n(x+2)^n}

     = \frac{(n+1)(n+1)^n(x+2)}{3(n+1)n^n} \Longrightarrow \frac{|x+2|}{3} < 1 \Longrightarrow -5 < x < 1

    However, the solution from the book goes like this:

    Book Solution

     \lim_{n\rightarrow\infty} \frac{3^{n+1}(n+1)!}{(n+1)^{n+1}(x+2)^{n+1}} * \frac{n^n(x+2)^n}{3^nn!}

     \lim_{n\rightarrow\infty} \frac{3n^n}{(n+1)^n(x+2)} = \frac{3}{x+2}

     -\frac{3}{e}  -2 < x < \frac{3}{e} -2 or

     -3.104 < x < -0.896


    What am I doing wrong? I copied the solution number/letter by number/letter.

    Does the same thing for #56:

    56.  \sum_{n=1}^{\infty} \frac{n!x^n}{5^nn^n}

    My Solution

     \lim_{n\rightarrow\infty} |\frac{a_{n+1}}{a_n} | = \frac{(n+1)!x^{n+1}}{(n+1)^{n+1}5^{n+1}} * \frac{5^nn^n}{n!x^n}

     \lim_{n\rightarrow\infty} \frac{|x|}{5} < 1 \Longrightarrow -5 < x < 5

    Book Solution

     \lim_{n\rightarrow\infty} \frac{(n+1)^{n+1}5^{n+1}}{(n+1)!x^{n+1}} * \frac{n!x^n}{5^nn^n}

     \lim_{n\rightarrow\infty} \frac{(n+1)^n5}{n^nx} = \frac{5}{x}

     -5e < x < 5e or

     = -13.591 < x < 13.591

    any help is appreciated.
    Last edited by lilaziz1; April 7th 2010 at 01:18 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor undefined's Avatar
    Joined
    Mar 2010
    From
    Chicago
    Posts
    2,340
    Awards
    1
    Quote Originally Posted by lilaziz1 View Post
    55.  \sum_{n=1}^{\infty} \frac{n^n(x+2)^n}{3^nn!}

    My Solution

     \lim_{n\rightarrow\infty} |\frac{a_{n+1}}{a_n} | = \frac{(n+1)^{n+1}(x+2)^{n+1}}{3^{n+1}(n+1)!} * \frac{3!n!}{n^n(x+2)^n}

     = \frac{(n+1)(n+1)^n(x+2)}{3(n+1)n^n} \Longrightarrow \frac{|x+2|}{3} < 1 \Longrightarrow -5 < x < 1

    However, the solution from the book goes like this:

    Book Solution

     \lim_{n\rightarrow\infty} \frac{3^{n+1}(n+1)!}{(n+1)^{n+1}(x+2)^{n+1}} * \frac{n^n(x+2)^n}{3^nn!}

     \lim_{n\rightarrow\infty} \frac{3n^n}{(n+1)^n(x+2)} = \frac{3}{x+2}

     -\frac{3}{e}  -2 < x < \frac{3}{e} -2 or

     -3.104 < x < -0.896


    What am I doing wrong? I copied the solution number/letter by number/letter.
    You used  \lim_{n\rightarrow\infty} |\frac{a_{n+1}}{a_n} | but it it's supposed to be  \lim_{n\rightarrow\infty} |\frac{a_n}{a_{n+1}} |, like what the book did... does that help?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Senior Member
    Joined
    Mar 2010
    Posts
    280
    Please notice, that
    \lim\frac{{(n+1)}^n}{n^n} = \lim{(1+\frac{1}{n})}^n = e
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member
    Joined
    Mar 2010
    Posts
    107
    but isn't the Ratio test  \frac{|a_{n+1}|}{|a_n|}
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    Mar 2010
    Posts
    107
    :O! i just re-did the problem. thanks a ton zzzoak!
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Senior Member
    Joined
    Mar 2010
    Posts
    280
    <br />
\lim\frac{(n+1)^n}{n^n}\frac{(x+2)}{3} \Longrightarrow \frac{e|x+2|}{3} < 1<br />
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Member
    Joined
    Mar 2010
    Posts
    107
    Quote Originally Posted by zzzoak View Post
    <br />
\lim\frac{(n+1)^n}{n^n}\frac{(x+2)}{3} \Longrightarrow \frac{e|x+2|}{3} < 1<br />
    Yea. Didn't use to pay attention to the n's much til now. thanks once again.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    MHF Contributor undefined's Avatar
    Joined
    Mar 2010
    From
    Chicago
    Posts
    2,340
    Awards
    1
    Quote Originally Posted by lilaziz1 View Post
    but isn't the Ratio test  \frac{|a_{n+1}|}{|a_n|}
    Hmm, you are right, I misread this Wikipedia article and saw that the book started with \lim_{n\to\infty}\frac{a_n}{a_{n+1}} and made a wrong conclusion. Sorry about that.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: April 29th 2010, 06:00 PM
  2. Replies: 1
    Last Post: December 10th 2009, 02:04 AM
  3. Replies: 6
    Last Post: December 10th 2009, 02:01 AM
  4. Replies: 1
    Last Post: June 8th 2009, 03:56 AM
  5. Replies: 1
    Last Post: May 14th 2009, 11:35 AM

Search Tags


/mathhelpforum @mathhelpforum