Using Leibniz notation, apply the chain rule to determine dy/dx at x=4.

y=u^2+3u, u=square root of x

So I rewrite square root of x as x^1/2

dy/du = 1/2x^-1/2

du/dx = 2u+3

dy/dx = (dy/du)(du/dx)

= 1/2x^-1/2 (2u+3)

= 1/2x^-1/2 [2(x^1/2)+3] *subbed in u

= 2(x^1/2)+3 / 1/2x^1/2

= 2(x^1/2)+3 / square root of 1/2x

The answer is 7/4, however my answer when I sub in x=4 is 7/1.414213562

What did I do wrong?