I have NO idea how to do this:
http://online2.byu.edu/webwork2_file...02c95fb4d1.png
I have NO idea how to do this:
http://online2.byu.edu/webwork2_file...02c95fb4d1.png
Wolfram Mathematica Online Integrator
yikes.
It may be a change of variables type of limit. You know, something like $\displaystyle \lim_{h\rightarrow 0} \frac{1}{h} \int f dx = \lim_{y\rightarrow \infty} y \int f dx.$
Do you have any notes on this?
Let $\displaystyle F(x) $ be an antiderivative of $\displaystyle \sqrt{7+t^{3}} $
then $\displaystyle \lim_{h \to 0} \ \frac{1}{h} \int^{2+h}_{2} \sqrt{7+t^{3}} = \lim_{h \to 0} \frac{F(2+h)-F(2)}{h} = F'(2)= \sqrt{7+2^{3}} = \sqrt{15}$
so your answer is correct