Results 1 to 9 of 9

Math Help - How to find this limit?

  1. #1
    Newbie
    Joined
    Mar 2010
    Posts
    5

    How to find this limit?

    lim (cube rt (8+h) - 2) / h
    h->0
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Ted
    Ted is offline
    Member
    Joined
    Feb 2010
    From
    China
    Posts
    240
    Thanks
    12
    Think about the definition of the derivative ..
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Mar 2010
    Posts
    5
    It's supposed to be solved without using L'Hopital.
    Maybe using rationalization, I don't know...
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Ted
    Ted is offline
    Member
    Joined
    Feb 2010
    From
    China
    Posts
    240
    Thanks
    12
    Quote Originally Posted by sodk View Post
    It's supposed to be solved without using L'Hopital.
    Maybe using rationalization, I don't know...
    Did you see post #2 ?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    May 2009
    Posts
    9
    Thanks
    1
    Or just use good old L`l˘pital rule

    \lim_{h\to 0} \frac{{\sqrt[3]{{8 + h}} - 2}}{h} \Rightarrow \lim_{h \to 0} \frac{{\frac{1}{{3\sqrt[3]{{\left( {8 + h} \right)^2 }}}}}}{1} \Rightarrow \frac{1}{{3\sqrt[3]{{\left( {8 + 0} \right)^2 }}}} \Rightarrow \frac{1}{{3\sqrt[3]{{64}}}} \Rightarrow \frac{{\sqrt[3]{{64^2 }}}}{{192}} \Rightarrow \frac{{\sqrt[3]{{4096}}}}{{192}} \Rightarrow \frac{{16}}{{192}}  \Rightarrow \underline{\underline {{\rm{ }}\frac{1}{{12}}{\rm{ }}}}

    Mmm Latex is strange ^^
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor
    skeeter's Avatar
    Joined
    Jun 2008
    From
    North Texas
    Posts
    13,096
    Thanks
    1939
    Quote Originally Posted by sodk View Post
    lim (cube rt (8+h) - 2) / h
    h->0

    expanding on Ted's excellent hint ...

     <br />
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}<br />
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,026
    Thanks
    842
    Hello, sodk!

    Here is Ted's suggestion . . . in baby-steps.

    Recall that: . (a-b)(a^2 + ab + b^2)\;=\;a^3-b^3


    Find: . \lim_{h\to0} \frac{\sqrt[3]{8+h} - 2}{h}

    Multiply by: . \frac{\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4} {\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4}

    \frac{\sqrt[3]{8+h} - 2}{h} \cdot\frac{\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4} {\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4} \;\;=\;\;\frac{(8+h) - 8}<br />
{h\left[\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4\right]}

    . . . =\;\;\frac{h} {h\left[\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4\right]} \;\;=\;\;\frac{1}{\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4}


    Therefore: . \lim_{h\to0}\left[ \frac{1}{\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4}\right]\;\;=\;\;\frac{1}{(\sqrt[3]{8})^2 + 2\sqrt[3]{8} + 4}\;\;=\;\;\frac{1}{4+4+4}\;\;=\;\;\frac{1}{12}

    Follow Math Help Forum on Facebook and Google+

  8. #8
    MHF Contributor
    skeeter's Avatar
    Joined
    Jun 2008
    From
    North Texas
    Posts
    13,096
    Thanks
    1939
    match up ...

     <br />
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}<br />

    to

    f'(8) = \lim_{h \to 0} \frac{\sqrt[3]{8+h} - \sqrt[3]{8}}{h}<br />

    and realize that f(x) = \sqrt[3]{x}

    f'(x) = \frac{1}{3\sqrt[3]{x^2}}

    and the desired limit is the value of f'(8) ...

    f'(8) = \frac{1}{12}
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Newbie
    Joined
    Mar 2010
    Posts
    5
    Quote Originally Posted by Soroban View Post
    Hello, sodk!

    Here is Ted's suggestion . . . in baby-steps.

    Recall that: . (a-b)(a^2 + ab + b^2)\;=\;a^3-b^3


    Multiply by: . \frac{\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4} {\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4}

    \frac{\sqrt[3]{8+h} - 2}{h} \cdot\frac{\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4} {\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4} \;\;=\;\;\frac{(8+h) - 8} {h\left[\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4\right]}" alt="
    {h\left[\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4\right]}" />

    . . . =\;\;\frac{h} {h\left[\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4\right]} \;\;=\;\;\frac{1}{\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4}


    Therefore: . \lim_{h\to0}\left[ \frac{1}{\sqrt[3]{(8+h)^2} + 2\sqrt[3]{8+h} + 4}\right]\;\;=\;\;\frac{1}{(\sqrt[3]{8})^2 + 2\sqrt[3]{8} + 4}\;\;=\;\;\frac{1}{4+4+4}\;\;=\;\;\frac{1}{12}
    That was exactly what I wanted! Unfortunately your post came late, I've solved it this exact way. My mistake was just trying to rationalize the numerator incorrectly. The trick is the factors (a-b)(a^2 + ab + b^2)\;=\;a^3-b^3
    Anyway thanks.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. [SOLVED] Find the limit of (1+x)^(3/x)
    Posted in the Calculus Forum
    Replies: 2
    Last Post: August 3rd 2011, 12:47 PM
  2. Find this limit
    Posted in the Calculus Forum
    Replies: 1
    Last Post: March 29th 2011, 07:26 PM
  3. Replies: 12
    Last Post: August 26th 2010, 10:59 AM
  4. Find the Limit
    Posted in the Calculus Forum
    Replies: 3
    Last Post: September 9th 2009, 04:42 PM
  5. Replies: 15
    Last Post: November 4th 2007, 07:21 PM

Search Tags


/mathhelpforum @mathhelpforum