Need McLaurin series of $\displaystyle

\ln{\left(\frac{1+2x}{1-3x+2x^2}\right)}

$

Tried to make it like $\displaystyle \ln\left({1+x}\right)$ and found $\displaystyle

\ln\left(1+\frac{5x-2x^2}{1-3x+2x^2}\right)

$

So, can i put that $\displaystyle \;\left(\frac{5x-2x^2}{1-3x+2x^2}\right)$ into $\displaystyle \sum\limits_{n= 1}^\infty\;\frac{{\left(-1\right)}^{n-1}}{n}x^n$

if i can not, how can i solve that problem?