Results 1 to 3 of 3

Math Help - find the sum of the series

  1. #1
    Senior Member
    Joined
    Jan 2010
    Posts
    273

    find the sum of the series

    \sum\limits_{k = 1}^\infty 1/(k(k+3))

    \sum\limits_{k = 0}^\infty  3/ 10^k

    \sum\limits_{k = 0}^\infty 1-2^k/3^k

    \sum\limits_{k = 0}^\infty 2^{k+3}/3^k

    can someone tell me the general method to find the sum of the similar series, or show me an example, please!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Mar 2010
    From
    usa
    Posts
    88
    \frac{1}{k(k+3)} = \frac{1}{3} \left(\frac{1}{k}-\frac{1}{k+3}\right)
    So
    \sum_{k=1}^n \frac{1}{k(k+3)} = \frac{1}{3} \left( \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+3}\right) =  \frac{1}{3} \left( \sum_{k=1}^n \frac{1}{k} - \sum_{k=4}^{n+3} \frac{1}{k}\right) =
    =\frac{1}{3} \left( 1+\frac{1}{2}+\frac{1}{3} - \frac{1}{n+1}-\frac{1}{n+2}-\frac{1}{n+3}\right)
    Therefore \sum_{k=1}^{\infty} \frac{1}{k(k+3)} = \frac{1}{3} \left( 1+\frac{1}{2}+\frac{1}{3}\right)=\frac{11}{18}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,738
    Thanks
    645
    Hello, wopashui!

    Sorry, there is no general method.
    Each problem requires a different approach.


    (1)\;\sum_{k = 1}^{\infty} \frac{1}{k(k+3)}
    We have: . S \;=\;\frac{1}{1\cdot4} + \frac{1}{2\cdot5} + \frac{1}{3\cdot6} + \frac{1}{4\cdot7} + \frac{1}{5\cdot8} + \cdots

    Applying Partial Fractions, we find that: . \frac{1}{k(k+3} \;=\;\frac{1}{3}\left[\frac{1}{k} - \frac{1}{k+3}\right]

    Hence: . S \;=\;\frac{1}{3}\bigg[\left(\frac{1}{1}-\frac{1}{4}\right) + \left(\frac{1}{2} - \frac{1}{5}\right) + \left(\frac{1}{3} - \frac{1}{6}\right) + \left(\frac{1}{4} - \frac{1}{7}\right) + \hdots \bigg]

    And everything cancels out except: . S \;=\;\frac{1}{3}\bigg[1 + \frac{1}{2} + \frac{1}{3}\bigg]

    Therefore: . S \;=\;\frac{1}{3}\cdot\frac{11}{6} \;=\;\frac{11}{18}




    \sum_{k = 0}^{\infty} \frac{3}{10^k}
    \text{We have: }\;S \;=\;\frac{3}{1} + \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \hdots \;=\;3\underbrace{\bigg[1 + \frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3} + \hdots\bigg] }_{\text{Geometric series}}

    The geometric series has the sum: . \frac{1}{1-\frac{1}{10}} \:=\:\frac{10}{9}

    Therefore: . S \;=\;3\cdot\frac{10}{9} \;=\;\frac{10}{3}




    \sum_{k = 0}^{\infty} \left(1-\frac{2^k}{3^k}\right)

    \text{We have: }\:S \;=\;\underbrace{\sum^{\infty}_{k=0}1}_{\text{dive  rges}} - \underbrace{\sum^{\infty}_{k=0}\left(\tfrac{2}{3}\  right)^k}_{\text{converges}}

    Therefore, S diverges.




    \sum_{k = 0}^{\infty} \frac{2^{k+3}}{3^k}

    \text{We have: }\;S \;=\;\sum^{\infty}_{k=0}\frac{2^{k+3}}{3^k} \;=\;\sum^{\infty}_{k=0}\frac{2^3\cdot2^k}{3^k} \;=\;8\sum^{\infty}_{k=0}\left(\frac{2}{3}\right)^  k

    We have a geometric series with the sum: . \frac{1}{1-\frac{2}{3}} \:=\:3

    Therefore: . S \:=\:8\cdot3 \:=\:24

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. find the sum of the series
    Posted in the Calculus Forum
    Replies: 1
    Last Post: May 13th 2011, 01:06 AM
  2. Replies: 3
    Last Post: September 29th 2010, 06:11 AM
  3. Binomial Series to find a Maclaurin Series
    Posted in the Calculus Forum
    Replies: 4
    Last Post: July 21st 2009, 07:15 AM
  4. Find the sum of the following series
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: May 4th 2009, 02:03 PM
  5. find the value of the p series
    Posted in the Calculus Forum
    Replies: 1
    Last Post: April 10th 2007, 04:45 PM

Search Tags


/mathhelpforum @mathhelpforum