I have a few derivative problems that need computation, they are as follows...

1. Find second derivative: $\displaystyle y=(x^2-5)*e^x$

Find Derivatives:

1. $\displaystyle f(x)=\frac{3-x^4}{x^2+5}$

2. $\displaystyle f(x)=(14-3x^2)^5$

3. $\displaystyle f(x)=\sqrt{x^2-3}$

4. $\displaystyle g(x)=2Ln(x^5)$

5. $\displaystyle h(x)=5x^2*LnX$

------------------------------------------------------

My answers:

1. Find second derivative:

$\displaystyle y1=2x*e^x+(x^2-5)*e^x$

$\displaystyle y2=e^x+2*e^x$

Find Derivatives:

1. $\displaystyle f1(x)=\frac{(-4x^3)(x^2+5)-(3-x^4)(2x)}{(x^2+5)^2}$

= $\displaystyle f1(x)=\frac{(-4x^3)-(3-x^4)(2x)}{(x^2+5)}$

2. $\displaystyle f1(x)= -6x*5u^4$

=$\displaystyle f1(x)=-6x*5(14-3x^2)^4$

=$\displaystyle f1(x)=-6x*(70-15x^2)^4$

.........IDK $\displaystyle Let u=14-3x^2$ $\displaystyle Let y=u^5$

3. confused

4. $\displaystyle g1(x)=$

$\displaystyle Let u=x^5$ $\displaystyle Let y=2LnU$

....???

5. $\displaystyle h1(x)=10x*Lnx+5x^2*\frac{1}{x}$

=$\displaystyle h1(x)=10x*Lnx+5x$