Find the MacLaurin polynomial of degree 3 for the function f(x)=e^2x. $\displaystyle \displaystyle{e^{2x}+2e^{2x}x+\frac{4e^{2x}}{2!}x^ {2}+\frac{8e^{2x}}{3!}x^{3}} $ Is that not correct?
Follow Math Help Forum on Facebook and Google+
Originally Posted by Lolcats Find the MacLaurin polynomial of degree 3 for the function f(x)=e^2x. $\displaystyle \displaystyle{e^{2x}+2e^{2x}x+\frac{4e^{2x}}{2!}x^ {2}+\frac{8e^{2x}}{3!}x^{3}} $ Is that not correct? not correct. $\displaystyle e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + ...$ now sub in $\displaystyle 2x$ for $\displaystyle u$
Thank you.
View Tag Cloud