I've been given the function:

$\displaystyle f:\mathbb{R}\to\mathbb{R}$ given by $\displaystyle f(x)=\frac{\sin(x)}{x}, x\neq 0$ and $\displaystyle f(x)=0$ otherwise.

Calculate the double integral:

$\displaystyle \int_0^1 \left(\int_y^1f(x)dx\right)dy$

I'm not sure how to tackle this one, any hints?