How do you compute the area of the curve r=10sin(18\theta) using Green's Theorem (ie. \oint F_{1}dx+F_{2}dy =\int\int (\frac{\delta F_{2}}{\delta x}-\frac{\delta F_{1}}{\delta y})dA )

I tried F_{1}=-y/2 and F_{2}=x/2


x=\theta
y=10sin(18\theta)
 dx=d\theta
dy=180cos(18x)d\theta

But I get this integral which I can't solve

\frac{1}{2}\int^{2\pi}_{0}(180\theta cos(18\theta)-10sin(18\theta))d\theta