I need to express the integrand as a sum of partial fractions and evaluate the integral....
$\displaystyle
\int \frac{dx}{1-x^{2}}
$
$\displaystyle \frac{1}{(1-x)(1+x)} = \frac{A}{1-x} + \frac{B}{1+x}$
$\displaystyle 1 = A(1+x) + B(1-x)$
let $\displaystyle x = 1$ ... $\displaystyle A = \frac{1}{2}$
let $\displaystyle x = -1$ ... $\displaystyle B = \frac{1}{2}$
$\displaystyle \frac{1}{(1-x)(1+x)} = \frac{1}{2}\left(\frac{1}{1-x} + \frac{1}{1+x}\right)$