How to prove that lim√nlogn=+ ∞ as n goes to ∞? Is it |√nlogn - ∞|< e as n>ne or...?
Follow Math Help Forum on Facebook and Google+
Beause $\displaystyle \sqrt n \geqslant \frac{{\ln (n)}}{2}$ then $\displaystyle \sqrt n \ln (n) \geqslant \frac{{\left[ {\ln (n)} \right]^2 }}{2}$. Use comparsion.
View Tag Cloud