1) lim of [(2x)/(cos(pie)(x))] as x approaches 1/2 from the left
2) lim of [(2(tan^2)x)/x] as x approaches 0
im good till they start throwin trig in the mix. thx for any help and could u pls show me step by step.
$\displaystyle \lim_{x \to 0} \ 2 \ \frac{\tan^{2}x}{x} = 2 \lim_{x \to 0} \frac{\tan x \tan x}{x} = 2 \Big(\lim_{x \to 0} \tan x \cdot \lim_{x \to 0} \frac{\tan x}{x} \Big) $
$\displaystyle = 2 \Big(\lim_{x \to 0} \tan x \cdot \lim_{x \to 0} \frac{\sin x}{x \cos x} \Big)= 2 \Big( \lim_{x \to 0} \tan x \cdot \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} \Big)= 2(0)(1)(1) = 0 $