Find the integration of :
(x^3)/(sqrt(x^2+100))
I did the following work, but it seems my answer is not matching to the Wolfram|Alpha' answer.
int x^3/(sqrt( x^2 +100)) dx - Wolfram|Alpha
Find the integration of :
(x^3)/(sqrt(x^2+100))
I did the following work, but it seems my answer is not matching to the Wolfram|Alpha' answer.
int x^3/(sqrt( x^2 +100)) dx - Wolfram|Alpha
Don't use a trig sub, use a hyperbolic sub.
Let $\displaystyle x = 10\sinh{t}$ so that $\displaystyle dx = 10\cosh{t}\,dt$.
Then the integral becomes
$\displaystyle \int{\frac{x^3}{\sqrt{x^2 + 100}}\,dx}$
$\displaystyle = \int{\frac{1000\sinh^3{t}}{\sqrt{(10\sinh{t})^2 + 100}}\,10\cosh{t}\,dt}$
$\displaystyle = \int{\frac{1000\sinh^3{t}}{10\cosh{t}}\,10\cosh{t} \,dt}$
$\displaystyle = \int{1000\sinh^3{t}\,dt}$
$\displaystyle = \int{1000\sinh{t}\sinh^2{t}\,dt}$
$\displaystyle = \int{1000\sinh{t}(\cosh^2{t} - 1)\,dt}$
$\displaystyle = 1000\int{\sinh{t}(\cosh^2{t} - 1)\,dt}$
Let $\displaystyle u = \cosh{t}$ so that $\displaystyle du = \sinh{t}\,dt$
The integral becomes
$\displaystyle 1000\int{u^2 - 1\,du}$
$\displaystyle = 1000\left(\frac{1}{3}u^3 - u\right) + C$
Now convert it back to a function of $\displaystyle x$.