Hello everyone, I'm new to this forum and to calculus in general too. Can anyone help me expand log(1-x/1+x) as taylor series pls I've been stuck on this problem for quite a while. Thanks very much in advance!

Printable View

- Feb 10th 2010, 04:02 PMzydtaylor series expansion for log(1-x/1+x)
Hello everyone, I'm new to this forum and to calculus in general too. Can anyone help me expand log(1-x/1+x) as taylor series pls I've been stuck on this problem for quite a while. Thanks very much in advance!

- Feb 10th 2010, 04:08 PMKrizalid
centered at?

if it is centered at zero, then just remember that $\displaystyle \ln\frac ab=\ln a-\ln b$ and the expansion for $\displaystyle \ln(1-x)$ and in the same fashion for $\displaystyle \ln(1+x).$ - Feb 10th 2010, 04:09 PMNacho
you note that: $\displaystyle

\ln \left( {\frac{{1 - x}}

{{1 + x}}} \right) = \ln \left( {1 - x} \right) - \ln \left( {1 + x} \right)

$, and remeber that $\displaystyle

\sum\limits_{n = 0}^\infty {x^n } = \frac{1}

{{1 - x}}{\text{ }}\forall \left| x \right| < 1{\text{ }}

$ - Feb 14th 2010, 04:13 AMzyd
Thanks for the help!