Results 1 to 3 of 3

Math Help - Proof of Triple Scalar or Box product

  1. #1
    Newbie
    Joined
    Feb 2010
    Posts
    2

    [solved] Proof of Triple Scalar or Box product

    Prove that (u cross v) dot w = u dot (w cross v)

    This is called the triple scalar or box product

    Please try it using a parallelpiped but be sure to consider all cases (the angle between the vector normal to the base and the height vector could be obtuse)

    I will gladly accept any other ways of proving this statement.

    Thank you.
    Last edited by joepinsley18; February 4th 2010 at 09:49 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,903
    Thanks
    764
    Hello, joepinsley18!

    Prove that: . (\vec u \times \vec v) \cdot \vec w  \;=\; \vec u \cdot (\vec w \times \vec v) . . . . Not true!

    I think you mean: . (\vec u \times \vec v) \cdot \vec w \;=\;\vec u \cdot({\color{red}\vec v} \times {\color{red}\vec w})


    We can do it in a most primitive way. . \text{Let: }\:\begin{Bmatrix}\vec u &=& \langle u_1,u_2,u_3 \rangle \\ \vec v &=& \langle v_1,v_2,v_3\rangle \\ \vec w &=& \langle w_1,w_2,w_3\rangle \end{Bmatrix}




    We have: . \vec u \times \vec v \;=\;\left|\begin{array}{ccc}\vec i& \vec j& \vec k \\ u_1&u_2&u_3 \\ v_1&v_2&v_3\end{array}\right| \;=\;\bigg\langle u_2v_3-u_3v_2,\;-(u_1v_3-u_3v_1),\;u_1v_2-u_2v_1\bigg\rangle


    Hence: . (\vec u \times \vec v)\cdot \vec w \;=\;\bigg\langle u_2v_3 - u_3v_2,\;-(u_1v_3-u_3v_1),\;u_1v_2-u_2v_1\bigg\rangle \cdot \bigg\langle w_1,w_2,w_3\bigg\rangle

    . . . . . . . . . . . . . =\;u_1v_2w_3 - u_1v_3w_2 - u_2v_1w_3 + u_2v_3w_1 + u_3v_1w_2 - u_3v_2w_1



    We have: . \vec v \times \vec w \;=\;\left|\begin{array}{ccc} \vec i& \vec j& \vec k\\v_1&v_2&v_3\\w_1&w_2&w_3\end{array}\right| \;=\;\bigg\langle v_2w_3-v_3w_2,\;-(v_1w_3-v_3w_1,\;v_1w_2 - v_2w_1\bigg\rangle


    Hence: . \vec u\cdot(\vec v\times \vec w) \;=\;\bigg\langle u_1,u_2,u_3\bigg\rangle \cdot\bigg\langle v_2w_3-v_2w_3,\;-(v_1w_3-v_3w_1),\;v_1w_2-v_2w_1\bigg\rangle

    . . . . . . . . . . . . . =\; u_1v_2w_3 - u_1v_3w_2 - u_2v_1w_3 + u_2v_3w_1 + u_3v_1w_2 - u_3v_2w_1



    Therefore: . (\vec u \times \vec v)\cdot \vec w \;=\;\vec u\cdot(\vec v \times \vec w)

    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Feb 2010
    Posts
    2
    I did intend to prove that "u cross v dot w = u dot w cross v". From your proof, I can see that this statement is false! By switching v and w as you did, the determinants of both matrices become equal. Had you tried proving the above statement, you would have found that the determinants are opposites. Thank you. I see it now.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. scalar triple product
    Posted in the Calculus Forum
    Replies: 4
    Last Post: October 3rd 2010, 06:18 AM
  2. scalar triple product, coplanar vectors.
    Posted in the Calculus Forum
    Replies: 2
    Last Post: February 24th 2009, 11:24 AM
  3. Geometric Description of Scalar Triple Product
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: November 11th 2008, 12:30 PM
  4. scalar triple product, check.
    Posted in the Calculus Forum
    Replies: 2
    Last Post: October 1st 2008, 02:02 AM
  5. Triple Scalar Product
    Posted in the Calculus Forum
    Replies: 5
    Last Post: June 9th 2008, 01:07 PM

Search Tags


/mathhelpforum @mathhelpforum