$\displaystyle (\frac{1}{0.81e^{j0.27}})*$=$\displaystyle \frac{1}{0.81}e^{j0.27}$
why we can remove the constant?
why the conjugate of a complex number is multiplication of the angle by -1
$\displaystyle (\frac{1}{0.81e^{j0.27}})*$=$\displaystyle \frac{1}{0.81}e^{j0.27}$
why we can remove the constant?
why the conjugate of a complex number is multiplication of the angle by -1
We can write $\displaystyle z=x+iy=|z|e^{i\theta}=|z|(\cos\theta+i\sin\theta)\ ,,\,\,\theta=\arg(z)=\arctan\left(\frac{y}{x}\righ t)$ $\displaystyle \Longrightarrow \overline{z}=|z|(\cos\theta-i\sin\theta)=|z|e^{-i\theta}$ , and that is why.