$\displaystyle \frac{2i}{2+i}$

i don know how to separate the complex and imaginary part of this fracture?

Printable View

- Jan 20th 2010, 02:39 AMtransgalacticrepresenting this complex fracture into exponent
$\displaystyle \frac{2i}{2+i}$

i don know how to separate the complex and imaginary part of this fracture? - Jan 20th 2010, 02:59 AMtonio
- Jan 20th 2010, 04:38 AMProve It
$\displaystyle \frac{2i}{2 + i} = \frac{2i(2 - i)}{(2 + i)(2 - i)}$

$\displaystyle = \frac{4i - 2i^2}{4 - i^2}$

$\displaystyle = \frac{2 + 4i}{5}$

$\displaystyle = \frac{2}{5} + \frac{4}{5}i$.

Now putting into polar form...

$\displaystyle |z| = \sqrt{\left(\frac{2}{5}\right)^2 + \left(\frac{4}{5}\right)^2}$

$\displaystyle = \sqrt{\frac{4}{25} + \frac{16}{25}}$

$\displaystyle = \sqrt{\frac{20}{25}}$

$\displaystyle = \frac{2\sqrt{5}}{5}$.

$\displaystyle \theta = \arctan{\frac{\frac{4}{5}}{\frac{2}{5}}}$

$\displaystyle = \arctan{2}$.

So $\displaystyle z = \frac{2\sqrt{5}}{5}\,\textrm{cis}\,\arctan{2}$

$\displaystyle = \frac{2\sqrt{5}}{5}e^{i\arctan{2}}$. - Jan 20th 2010, 05:05 AMtransgalactic
thanks:)