I need help with these two problems.
$\displaystyle \lim_{x\to0^+}$ $\displaystyle (lnx-lnsinx)$
and
$\displaystyle \lim_{x\to0^+}$ $\displaystyle \frac{1}{x}$ - $\displaystyle \frac{1}{\sqrt{x}}$
$\displaystyle \lim_{x\to0^+}$ $\displaystyle (lnx-lnsinx)$
$\displaystyle =\lim_{x\to0^+}ln(\frac{x}{sinx})$
$\displaystyle =ln(\lim_{x\to0^+}\frac{x}{sinx})$
$\displaystyle =ln(1)=0$
For the another one:
$\displaystyle \frac{1}{x}-\frac{1}{\sqrt{x}} = \frac{1-\sqrt{x}}{x}$
Got it ?