Results 1 to 3 of 3

Math Help - confused about delta epsilon proofs

  1. #1
    Member
    Joined
    Aug 2008
    Posts
    249

    confused about delta epsilon proofs

    i know how to do basic proofs, but some proofs on the actual limit theorems confuse me. my textbook's choices for delta are very obscure and i have no idea how they even came up with that.

    for the proof of the limit theorem where the limit of a product of 2 functions is equal to the product of their limits, my book did: f = L1 + (f-L1) and g = L2 + (g-L2). and they want to show that |fg - L1*L2| < ε if 0<|x-a|<δ.

    so with substitution and rearrangement they get |L1(g-L2)+L2(f-L1)+(f-L1)(g-L2)|< ε. since the limit of f as x approaches a is L1 and limit of g as x approaches a is L2, we can find positive numbers δ1, δ2, δ3, δ4 such that:

    |f-L1|< sqrt(ε/3) if 0<|x-a|<δ1
    |f-L1|< ε/[3(1+|L2|)] if 0<|x-a|<δ2
    |g-L2|< sqrt(ε/3) if 0<|x-a|<δ3
    |g-L2|< ε/[3(1+|L1|)] if 0<|x-a|<δ4

    the rest of the proof i understand but what confuses me is where and how did they get those expressions sqrt(ε/3) and ε/[3(1+|L2|)]?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    is up to his old tricks again! Jhevon's Avatar
    Joined
    Feb 2007
    From
    New York, USA
    Posts
    11,663
    Thanks
    3
    Quote Originally Posted by oblixps View Post
    i know how to do basic proofs, but some proofs on the actual limit theorems confuse me. my textbook's choices for delta are very obscure and i have no idea how they even came up with that.

    for the proof of the limit theorem where the limit of a product of 2 functions is equal to the product of their limits, my book did: f = L1 + (f-L1) and g = L2 + (g-L2). and they want to show that |fg - L1*L2| < ε if 0<|x-a|<δ.

    so with substitution and rearrangement they get |L1(g-L2)+L2(f-L1)+(f-L1)(g-L2)|< ε. since the limit of f as x approaches a is L1 and limit of g as x approaches a is L2, we can find positive numbers δ1, δ2, δ3, δ4 such that:

    |f-L1|< sqrt(ε/3) if 0<|x-a|<δ1
    |f-L1|< ε/[3(1+|L2|)] if 0<|x-a|<δ2
    |g-L2|< sqrt(ε/3) if 0<|x-a|<δ3
    |g-L2|< ε/[3(1+|L1|)] if 0<|x-a|<δ4

    the rest of the proof i understand but what confuses me is where and how did they get those expressions sqrt(ε/3) and ε/[3(1+|L2|)]?
    Notice that you have |fg - L_1L_2| = |L_1(g - L_2) + L_2(f - L_1) + (f - L_1)(g - L_2)| \le |L_1||g - L_2| + |L_2||f-L_1| + |(f - L_1)||(g - L_2)| by the triangle inequality.

    Now, we want this expression to be less than \epsilon. Since we have three terms, it suffices to make sure each term is less than \frac \epsilon 3, so that their sum would be less than \epsilon. Hence we find that:

    |L_1||g - L_2| < \frac \epsilon 3 \implies |g - L_2| < \frac \epsilon {3|L_1|} ..........(1)

    |L_2||f - L_1| < \frac \epsilon 3 \implies |f - L_1| < \frac \epsilon {3|L_2|} ..........(2)

    And it seems straight-forward to make |f - L_1| < \sqrt{ \frac \epsilon 3} and |g - L_2| < \sqrt{ \frac \epsilon 3}, so that |f - L_1||g- L_2| < \sqrt{ \frac \epsilon 3}  \sqrt{ \frac \epsilon 3} = \frac \epsilon 3.

    But there is a problem with (1) and (2), what if L_1 or L_2 are zero? Big trouble. So we can throw in an extra 1 in there to ensure that division by zero never happens. At the same time, increasing the denominator makes the fraction smaller, and keeps the expression positive, thus it is good all around for an upper bound. Got it?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Aug 2008
    Posts
    249
    thanks! my textbook completely skipped those steps you just explained and just wrote those 4 inequalities right off the bat.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 38
    Last Post: July 26th 2014, 11:28 PM
  2. Epsilon-Delta Proofs :(
    Posted in the Calculus Forum
    Replies: 3
    Last Post: September 6th 2010, 12:29 PM
  3. Epsilon delta proofs
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: January 16th 2010, 05:22 AM
  4. Please help, epsilon-delta proofs
    Posted in the Calculus Forum
    Replies: 1
    Last Post: October 5th 2009, 07:33 PM
  5. Help with delta epsilon proofs...
    Posted in the Calculus Forum
    Replies: 6
    Last Post: January 6th 2009, 06:45 PM

Search Tags


/mathhelpforum @mathhelpforum