Results 1 to 4 of 4

Math Help - Find each derivative in simplest factored form

  1. #1
    Newbie
    Joined
    Sep 2009
    Posts
    8

    Find each derivative in simplest factored form

    Hi, I'm having some trouble with these problems.

    1. f(x) = 3sin(cos4x)

    2. f(x) = 5cos(sin(sin(4x^2)))

    3. f(x) = sin^2(3x^2)

    4. f(x) = cos^4(sin(cos(3x+2)))

    I'm not really sure what these 2 problems are asking me to do:

    5. Write the equation of the tangent line to the curve f(x) = 3cos2x at x = 0.

    6. Write the equation of the normal line to the curve f(x) = tan3x at x = pi/12

    Any help is appreciated, thanks in advance!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Jun 2009
    From
    United States
    Posts
    676
    Thanks
    19
    You aren't suppose to post lists of problems like this. It's againsts the rules of the forum. You should show some of your work so that we know what you're struggling with.

    If you're in a calculus class, and you've been assigned these problems, then you should be familiar with the basic rules of differentiation. The functions you listed are all composite trig functions. This means that you need to use the chain rule, and the derivatives of the trig functions in their most basic forms. I'll help you get started with a few of them.

    Problem 1

    y=f(x)=3sin(cos(4x))

    Think of it like this. Let u=cos(4x).

    Then y=3sin(u)

    The derivative can be found by the chain rule.

    \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}

    See if you can finish this.

    ---------------------------------------------------------------

    Problem 2

    For a function like y=f(x)=5cos(sin(sin(4x^2)))

    Just apply an extended version of the chain rule.

    Let u=sin(4x^2)

    So you can write:

    y=5cos(sin(u))

    You still have a composite function here, so use another variable:

    Let v=sin(u)

    y=5cos(v)

    Now just apply the chain rule.

    \frac{dy}{dx}=\frac{dy}{dv}\frac{dv}{du}\frac{du}{  dx}

    See if you can finish.

    ---------------------------------------------------------------
    Problems 5 and 6

    For tangent lines, you should be familiar with the fact that the equation of the tangent line to the curve y=f(x) at the point (a, f(a)) is y-f(a) =f'(a)(x-a) . This is a basic fact, and should be easy to apply to the functions you were given in problems 5 and 6.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Sep 2009
    Posts
    8
    Thanks so much! I wasn't aware that this wasn't allowed, I'll make sure to look over the rules before posting again. I have another question, on problem 6, I found the derivative to be

    f'(x) = 3sec^2(3x)

    And I'm trying to plug pi/12 into the equation to find the slope but I'm stuck at this step

    3sec^2(pi/4)

    Where can you go from here? Thanks!
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    Joined
    Jun 2009
    From
    United States
    Posts
    676
    Thanks
    19
    Quote Originally Posted by Skizye View Post
    Thanks so much! I wasn't aware that this wasn't allowed, I'll make sure to look over the rules before posting again. I have another question, on problem 6, I found the derivative to be

    f'(x) = 3sec^2(3x)

    And I'm trying to plug pi/12 into the equation to find the slope but I'm stuck at this step

    3sec^2(pi/4)

    Where can you go from here? Thanks!
    Remember the reciprocal identities from trignometry? You can write the slope at x=\frac{\pi}{12} as follows:

    f'\left(\frac{\pi}{12}\right)=3sec^2\left(\frac{\p  i}{4}\right)

    =\frac{3}{cos^2\left(\frac{\pi}{4}\right)}

    It's easy to show that:

    cos\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}

    The square of this is just \frac{1}{2}, so you should find that the slope of the tangent line simplifies to f'\left(\frac{\pi}{12}\right)=6. However, they are asking for the NORMAL line at x=\frac{\pi}{12}. This is the line perpendicular to the tangent line at that point. Perpendicular lines have slopes that are negative reciprocals of each other. So the equation will have the form:

    y-f\left(\frac{\pi}{12}\right)=-\frac{1}{6}\left(x-\frac{\pi}{12}\right)

    y-tan\left(\frac{\pi}{4}\right)=-\frac{1}{6}\left(x-\frac{\pi}{12}\right)

    You should be able to take it from here. Did that all make sense?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Factored Form
    Posted in the Algebra Forum
    Replies: 2
    Last Post: July 7th 2010, 06:52 AM
  2. Factored form question
    Posted in the Algebra Forum
    Replies: 5
    Last Post: April 12th 2010, 04:56 PM
  3. Replies: 1
    Last Post: October 19th 2008, 03:44 AM
  4. Replies: 14
    Last Post: May 30th 2008, 07:10 AM
  5. Relations in Standard, Factored, and Vertex Form.
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: December 7th 2006, 11:59 AM

Search Tags


/mathhelpforum @mathhelpforum