Hi im not sure how to do this problem:
$\displaystyle \int \frac{1}{10}te^{0.1t} dt$
Thanks
Read this Integration by parts - Wikipedia, the free encyclopedia
For $\displaystyle \int uv' = uv - \int vu'$
In your case make $\displaystyle u=\frac{1}{10}t $ and $\displaystyle v' = e^{0.1t}$
now find $\displaystyle u'$ and $\displaystyle v$
Right finally found time to get back to this problem, this is where im at.
$\displaystyle \int \frac{1}{10}te^{0.1t} dt$
Make $\displaystyle v = \frac{1}{10}t$
So $\displaystyle \frac{dv}{dx} = \frac{1}{10}$
And Make$\displaystyle \frac{du}{dx} = e^{0.1t}$
So $\displaystyle u = 10e^{0.1t}$
Using
$\displaystyle \int uv' = uv - \int vu'$
I get:
$\displaystyle \int \frac{1}{10}t \times e^{0.1t} = 10e^{0.1t} \times \frac{1}{10}t - \int 10e^{0.1t} \times \frac{1}{10}$
Am I doing this right or am i on totally the wrong track?
God I suck at maths