1. ## Limit Proof Question

Hey, will appreciate help with the following Question;
Prove That,

$\lim \frac{1}{\sqrt{n}} (1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}) = 0$

Thanks in advance for any help !

2. Alright I think I got it this time:

$0\leq a_n= \frac{1}{\sqrt{n} } \sum_{k=1}^{n} \frac{1}{k} = \frac{1}{n} \sum_{k=1}^{n} \frac{\sqrt{n} }{k} \rightarrow 0$ by Cesaro's mean (your sequence is $b_n=\frac{\sqrt{n} }{n}=\frac{1}{\sqrt{n} } \rightarrow 0$), so $a_n \rightarrow 0$

3. I remember that

$\lim_{n\to\infty} \sum_{k=1}^n \frac{a_k}{n} = \lim_{n\to\infty} a_{n}$

this case $a_k = \frac{1}{k}$

$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{k}$

$= \lim_{n\to\infty} \frac{\sqrt{n}}{n} \sum_{k=1}^{n} \frac{1}{k}$

$= \lim_{n\to\infty} \sqrt{n} \frac{1}{n}$

$= \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$

I think this theorem is what Jose27 mentioned ...

4. ## did not quite understand

Hey, thanks for the answer, there is still something unclear to me,
in order to use cesaro's mean, you assume that
$

\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{k}
$
exists ?

at least by Cauchy Criterion For Convergence (to my knowledge) i find that this sequence does not have a limit.

i'd appreciate further explanations (also if i got the Cauchy criterion wrong... )

Thanks and have a nice weekend

5. Originally Posted by antisane
Hey, thanks for the answer, there is still something unclear to me,
in order to use cesaro's mean, you assume that
$

\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{k}
$
exists ?

at least by Cauchy Criterion For Convergence (to my knowledge) i find that this sequence does not have a limit.

i'd appreciate further explanations (also if i got the Cauchy criterion wrong... )

Thanks and have a nice weekend

I am not sure what the cesaro's mean is ,

But talking about the theorem I made use , the series should not have a limit ( diverges to infinty ) , otherwise , the result is to be zero .

$\lim_{n\to\infty} \sum_{k=1}^n \frac{a_k}{n} = \lim_{n\to\infty} \frac{E}{n} = 0$

which is meaningless .